Dual production of high-purity hydrogen and synthesis gas using integrated sorptionenhanced steam reforming of methane with in-situ CO₂ utilization

<u>Napasrapee Hemsap¹</u>, Suwimol Wongsakulphasatch^{1*}, Olaf Hinrichsen², Suttichai Assabumrungrat³

¹Centre of Excellence on Catalysts and Membrane Technology for Energy and Environment, Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand

²Technical University of Munich, Department of Chemistry and Catalysis Research Center, 85748 Garching near Munich, Germany

³Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

*Corresponding author: suwimol.w@eng.kmutnb.ac.th

Highlights

- Dual production of H₂ and syngas can be conducted by an intensified thermochemical process.
- High H₂ purity of 89% v/v is produced via sorption-enhanced reforming technology (SE-SR).
- Syngas (H₂/CO \approx 1.3-1.5) can be produced by chemical looping bi-reforming (CL-BR) with in-situ carbon dioxide (CO₂) utilization.

1. Introduction

Global major issue regarding to climate change makes H_2 become an interesting substance to fulfill the requirement of searching for alternative cleaner energies. Not only can H_2 be used directly as an energy carrier for transportation but it can also be used as a substance for fuel, electricity, and chemical productions [1-2]. As a consequence, improving the production of H_2 and syngas has attracted great interest as it can not only reduce CO_2 emission but also utilize CO_2 into value-added products. Limiting the emission of CO_2 by introducing carbon capture and utilization unit (CCU) is a choice to improve H_2 production process to be more environmentally friendly and economically. One technique that is employed to improve process efficiency as well as limit CO_2 emission and utilize CO_2 is a co-production of high H_2 purity and syngas using process integration concept [3-5]. In this work, feasibility of the dual production is investigated by studying the effects of steam addition on CH_4 conversion, H_2 purity, syngas quality (the molar ratio of H_2/CO) via process simulation and experiments. Then process design with the consideration of heat exchanger network is proposed.

2. Methods

Thermodynamic and experimental studies for the dual production of H_2 *and syngas*

Thermodynamic analysis was applied to study the effects of steam to carbon molar ratio (S/C) fed to the calcination reactor on H_2 and syngas production performances and the feasibility of the designed process by Aspen Plus software.

Multi-function material Ni/CaO-Ca₁₂Al₁₄O₃₃, composing of Ni as an active catalyst, CaO as an CO₂ sorbent, and alumina as a support material, was synthesized by sol–gel method. The mass fraction of Ni in each catalyst was maintained at 15 wt% with calcium and aluminum ratio 70:30 wt%. H₂ and syngas production tests were experimentally carried out using fixed-bed reactor system.

3. Results and discussion

The results in Fig. 1 show that theoretical CH₄ conversion obtained from the reforming reactor is 90.78%, which is closed to that obtained from the experiments of 85.64%. Simulation result also reveals that high H₂ purity of 76.13 % v/v can be obtained from the reforming reactor, comparative with the experimental result of 68.64 % v/v. The production of high H₂ purity is due to the effect of sorption-enhanced reaction according to Le Chatelier's principle. Syngas can be produced from the calcination results show the syngas quality of ca. 1.5-1.6 is obtained for all S/C molar ratios feed whereas the experimental results show the values between 1.2-1.4. The S/C = 0.1 provides the

lowest H_2/CO molar ratio and the S/C = 0.5 provides the highest H_2/CO molar ratio. Our results demonstrate that syngas can be produced by chemical looping bi-reforming (CL-BR) with in-situ carbon dioxide (CO₂) utilization.

Fig. 1: Comparison of simulation and experimental results a) high H₂ purity obtained from the reforming step and b) syngas obtained from calcination step at different S/C molar ratios.

Process flow diagram of the system is proposed in Fig. 2, the process is composed of three main reactors: reforming, oxidation, and calcination reactors. When calculating and considering the heat exchanger network, the thermal efficiency of the process is found to be 89%.

Fig. 2: Proposed process design of an integrated sorption-enhanced steam reforming of methane with in-situ CO₂ utilization for dual production of H₂ and syngas.

4. Conclusions

The results of this study demonstrated that, by utilizing CO_2 under the process intensification concept, high purity of H_2 and syngas could be co-produced. The in-situ utilization of CO_2 to syngas not only can be used as chemical or fuel source but it can improve thermal efficiency of the process.

References

[1] P.E. Dodds, W. McDowall, Energy Pol. 60 (2013) 305-316.

- [2] M. Ball, M. Weeda, Int. J. Hydrogen Energ. 40 (2015) 7903-7919.
- [3] J.N. Kim, C.H. Ko, K.B. Yi, Inter. J. Hydrogen Energ. 38 (2013) 6072-78.
- [4] A.S. Fedotov, D.O. Antonov, V.I. Uvarov, M.V. Tsodikov, Inter. J. Hydrogen Energ. 43 (2018) 7046-7054.
- [5] C. Dang, S. Wu, Y. Cao, H. Wang, F. Peng, H. Yu, Chem. Eng. J. 360 (2019) 47-53.

Keywords

Hydrogen, syngas, CO₂ utilization.