Kinetic Analysis of Ammonia Cracking over Ru-based Catalysts for CO_x-free Hydrogen Production

Yi Qiu, Federico Sascha Franchi, Nicola Usberti, Alessandra Beretta*

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156, Milano, Italy * alessandra.beretta@polimi.it

Highlights

- The following scale of intrinsic activity is found: Ru/MgAl₂O₄>Ru/MgO>Ru/Al₂O₃.
- Independently from the nature of the support, H₂ adsorption inhibits NH₃ cracking.
- The kinetic dependences support that H^* extraction from NH_2^* is the RDS.

1. Introduction

To achieve net-zero CO₂ emission in the coming decades, hydrogen is considered as one of the most promising energy carriers for the future energy systems [1]. To overcome the challenges for the storage and transportation of H₂, liquid H₂-vectors are promising candidates [2]. Among them, ammonia has attracted increasing attention, due to well established production and distribution infrastructure, zero carbon emissions during dehydrogenation and no side reactions [3]. The development of efficient catalysts with outstanding performances at relatively low temperatures is thus of utmost interest. According to the state of the art, Ru is the most active metal for NH₃ decomposition [4]. Although widely studied, the mechanism and kinetics of NH₃ decomposition over Ru-based catalysts are still under discussion. In this work, a kinetic investigation of NH₃ decomposition was performed over Ru-based catalysts, with a systematic experimental and modelling work.

2. Methods

 Ru/γ -Al₂O₃, Ru/MgO and Ru/MgAl₂O₄ catalysts were prepared via an incipient wetness impregnation by using Ru(NO)(NO₃)₃ as precursor. Catalysts were characterized by BET, ICP-MS, H₂-chemisorption, SEM, TEM and NH₃-TPD. Catalytic tests were carried out in a continuous fixed-bed flow reactor, after reduction in flowing H₂ at 450 °C. NH₃ decomposition was tested in a micro fixed bed reactor with diluted NH₃-feeds, in order to guarantee isothermal conditions. Tests were thus simulated by a an isothermal 1D pseudo-homogeneous reactor model. Experiments were performed at varying ammonia concentration, and with H₂ and N₂ co-feed. Gas composition was analyzed by an on-line MS.

3. Results and discussion

Characterization results are reported in Table 1; they show that the morphological properties were favorable for $Ru/\gamma-Al_2O_3$ and $Ru/MgAl_2O_4$, but extremely poor in the case of Ru/MgO. As a consequence, Ru dispersion was especially low for Ru/MgO. However, the catalytic tests (Figure 1) showed the activity order: $Ru/MgAl_2O_4 > Ru/MgO > Ru/\gamma-Al_2O_3$ thus the process was clearly enhanced by the basicity of MgO and MgAl_2O_4 and by the high Ru dispersion offered by the latter support. The kinetic investigation showed an apparent negative order with respect to NH₃ (Figure 2), but H₂ cofeed tests (Figure 3) revealed that the reaction is strongly inhibited by H₂, such that first order dependence on NH₃ is recovered at large H₂ feed content. NH₃ conversion was instead insensitive to N₂ cofeed (Figure 4).

$$r = k(T) * \frac{P_{NH_3}}{P_{H_2}^{1.5}}$$
 (Eq. 1)

A simple power-law expression (Eq.1) (order 1 with respect to NH_3 and order -1.5 with respect to H_2) could well explain the data, suggesting that the rate-determining step is within the NH_3 dehydrogenation pathway. The same dependencies were found over all the catalysts despite the different activity. The basicity of MgO and MgAl₂O₄ might favor the reaction by weakening the Ru-H bond, which suggests a

direction for catalyst optimization (e.g. through proper design of the support). Besides, multifunctional reactors with H_2 -selective removal appear a promising strategy to overcome the kinetic barrier.

Table 1. Textural properties of catalysts				
Sample	S _{BET} / m ² .g ^{-1 a}	V_p / mL.g ^{-1 a}	dp/Ū	D _{Ru} /% ^b
Ru/y-Al ₂ O ₃	139	0,44	94	15,6
Ru/MgO	13	0,09	253	8,2
Ru/MgAl ₂ O ₄	113	0,39	94	29,6

^a via BET

^b via H₂ chemisorption performed at 40°C

Figure 1. Effect of supports, 2.55% NH₃ in He. GHSV=20000 Nl/h/Kg_{cat}.

Figure 3. effect of H₂ co-feed, GHSV=20000 Nl/h/Kg_{cat}.

Figure 4. effect of N₂ cofeed on Ru/MgAl₂O₄, GHSV=20000 Nl/h/Kg_{cat}.

4. Conclusions

 Ru/γ -Al₂O₃, Ru/MgO and Ru/MgAl₂O₄ catalysts were prepared and tested to investigate the kinetics of NH₃ cracking. Results showed the favorable impact of the support basicity. Another important finding is that the kinetics of ammonia cracking on Ru are strongly limited by H₂-inhibition. Recognizing this crucial factor can lead to optimized catalysts formulations (basicity) and reactor designs (integrated H₂ separation).

References

- [1] K.E. Lamb, M.D. Dolan, D.F. Kennedy, Int J Hydrogen Energy 44 (2019) 3580–3593.
- [2] M. Asif, S. Sidra Bibi, S. Ahmed, M. Irshad, M. Shakir Hussain, H. Zeb, M. Kashif Khan, J. Kim, Chemical Engineering Journal 473 (2023) 145381.
- [3] S. Sayas, N. Morlanés, S.P. Katikaneni, A. Harale, B. Solami, J. Gascon, Catal Sci Technol 10 (2020) 5027– 5035.
- [4] S.R. Kulkarni, N. Realpe, A. Yerrayya, V.K. Velisoju, S. Sayas, N. Morlanes, J. Cerillo, S.P. Katikaneni, S.N. Paglieri, B. Solami, J. Gascon, P. Castaño, Catal Sci Technol (2023) 2026–2037.

Keywords

Hydrogen generation; ammonia cracking; kinetic analysis.