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Highlights 

 Global Reaction Neural Networks learn kinetics from noisy integral reactor data 

 Due to the embedded physics, they outperform conventional neural networks  

 Successful application to both systems with equilibrium limitations and stiff kinetics  

 

1. Introduction 

The digitalization in chemical research, alongside big data frameworks [1], has led to an abundance of 

data for developing kinetic models. But model parameterization is not keeping up with the data supply 

and is becoming the bottleneck in the model-based engineering workflow. Machine learning tools are 

urgently required to exploit the potential of this data. Neural ordinary differential equations (neural 

ODEs) [2] recently emerged as the state-of-the art for learning dynamics from time-series data, such as 

integral reactor measurements, by neural networks. We introduce Global Reaction Neural Networks 

(GRNN) [3] with embedded physico-chemical knowledge of stoichiometry and chemical equilibrium 

and train them as a neural ODEs on integral reactor data. We show that the models accurately retrieve 

the true kinetics from noisy integral reactor measurements, both for equilibrium limited reactors [3] and 

for reactors with stiff kinetics operating close to or at full conversion [4]. 

 

2. Methods 

Global Reaction Neural Networks with embedded stoichiometry and thermodynamics map reaction 

conditions to a latent representation of global reactions rates, which is then used to calculate the 

corresponding chemical source terms by embedded algebraic equations [3]. When coupled with reactor 

physics, they can be trained as neural ODEs on integral reactor data. The neural network layers of the 

GRNN map the partial pressure p and temperature  to latent representations of the forward reaction 

rates . The De Donder relation is then used to compute thermodynamically consistent net reaction rates 

 from the forward rates using tabulated thermochemistry. These net rates approach zero if reactants 

are depleted and predict the correct equilibrium. Then, the chemical source terms  are calculated using 

the embedded stoichiometry. These source terms strictly conserve the atom balance. The model 

architecture, including the embedding algebraic equations, is shown in figure 1. 

Figure 1.  Global Reaction Neural Network mapping reaction conditions (T, p) to chemical source terms ( ). Embedded 

physical knowledge is blue, latent variables of interest are red and latent variables of the hidden layers are green [3].  

 

We showcase our modelling approach for two different reaction systems. We use a steam reforming 

reactor for anode-off gas recycling of a fuel cell, operating close to the equilibrium, and a reactor for the 

preferential oxidation of CO for pretreatment of streams entering a fuel cell, operating close to or at full 

conversion, as representative application examples. For both we defined a range of input conditions 



where we required our machine learned kinetic model to work and randomly sampled inlet conditions 

from this range. Synthetic experimental data of the reaction systems was generated for these conditions 

with 1-D plug flow reactor models, using the microkinetic model by Maestri et al. [5] and Hauptmann 

et al. [6]. A laboratory setting was mimicked by reducing synthetic experimental data to mole flows and 

temperature measurements at six equidistant points along the reactor length and adding gaussian noise. 

3. Results and discussion 

We used our proposed method for automated kinetic modelling to separately learn kinetics both from 

an equilibrium limited system [3] (Steam Reforming) and a reactor operating close to full conversion 

(Preferential oxidation of CO) [4]. In the first step, we demonstrated that the neural ODE with embedded 

physics accurately retrieved the kinetics from reactor experiments without noise, whereas conventional 

neural ODEs failed. In the second step, we trained our global reaction neural ODE on reactor 

experiments with significant noise. Here, we showed that for both reaction systems the models recovered 

the true solution with higher quality than the noisy data used for training it and generalized to unseen 

data. This is because the models are highly biased towards the true solution due to the embedded physics. 

Figure 2 shows an example from the preferential oxidation of CO with ground truth (dots), noisy training 

data (diamonds), and predictions of the trained GRNN (lines) for the O2 and CO molar flows (left) and 

the O2 source terms (right). The global reactions governing the system are shown on the right. The model 

was only trained on the noisy data and did not have access to ground truth molar flows or source terms.  

Figure 2.  Profile of O2 and CO molar flow (left) and O2 source terms (right) predicted by the trained GRNN (line), the noisy 

training data (diamonds) and the ground truth (circles) [4]. 

4. Conclusions 

Data availability is increasing due to digitalization, high-throughput experimentation, and new data 

infrastructures. Our proposed approach allows the combination of this data with prior knowledge for the 

autonomous generation of kinetic models. These kinetic models generalize well to unseen data and 

accurately recover the ground truth chemical source terms. As our approach has proven successful for 

two important edge cases of industrial applications, namely equilibrium limitation and high conversion, 

we anticipate that it will be applicable to a wide range of systems and thus contribute to the acceleration 

of kinetic model development.  
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