Paradox of Catalyst Deactivation: How to Extend the Catalyst Life Intensifying the Catalytic Cycle.

Zoë J. G. Gromotka^{1*}, Gregory S. Yablonsky², Nickolay M. Ostrovskii³, Denis Constales⁴

1 Delft Institute of Applied Mathematics, EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands; 2 Department of Energy, Environmental & Chemical Engineering, McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA; 3 Euro Gas, 24000 Subotica, Serbia; 4 Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium

*Corresponding author: z.j.g.gromotka@tudelft.nl

Highlights

- A new conceptual framework for transient behaviour of catalytic systems accompanied by deactivation.
- Insights into the intrinsic characteristics of the deactivation process and the main catalytic process.
- A recipe for extending catalyst life for regimes with small concentrations of active sites.

1. Introduction

Dynamic behavior of complex catalytic 'gas-solid' reactions accompanied by catalyst deactivation, both self-regeneration and ageing, was studied. Quasi-steady-state (QSS) behavior of intermediates of the catalytic cycle is determined by two small parameters": 1) the small parameter caused by the difference in magnitude between the number of catalyst active sites and the number of gaseous molecules; 2) the small parameter caused by the difference between the deactivation parameters and the parameters of the main catalytic cycle.

2. Background

In one of the typical cases, the irreversible catalytic cycle accompanied by irreversible deactivation under QSS conditions, the deactivation equation can be written as follows [1, 2],

$$\frac{d\Theta_{\rm p}}{dt} = \frac{R_0}{k_i N_S} k_p (1 - \Theta_p),\tag{1}$$

where R_0 is the QSS reaction rate of the fresh catalyst [mol m⁻² s⁻¹], N_S is the total number of active catalytic sites per square meter [mol m⁻²], and k_j and k_p are apparent kinetic constants of the reaction of the catalytic cycle and deactivation reaction [s⁻¹], respectively. The ratio $\frac{R_0}{k_j N_S} = \Theta_{\text{fresh}}$ is the QSS concentration of the catalytic intermediate that deactivates [-]. Using Equation (1), for the single-route catalytic reaction accompanied by both reversible and irreversible deactivation, the semi-phenomenological three-factor equation [3] was obtained,

$$R(t) = R_0 \varphi_{\rm rev}(R_0, c, t; T) \varphi_{\rm irr}(R_0, c, t; T),$$
(2)

where $\varphi_{rev}(R_0, c, t; T)$ and $\varphi_{irr}(R_0, c, t; T)$ are factors related to the reversible and irreversible deactivation [-], respectively, c is the set of reactant and product concentrations [mol m⁻³], t is the time [s] and, T is the temperature [K]. Equation (2) was used for the description of catalytic dehydration of acetaldehyde and crotonaldehyde dehydrogenation.

3. Results and Discussion

For irreversible deactivation, Equation (2) can be represented as,

$$R(t) = R_0 \exp\left(-k_p \Theta_{\text{fresh}} t\right),$$

= $R_0 \exp\left(-\frac{k_p R_0}{k_j N_s} t\right).$ (3)

The relationship for the single-route complex catalytic reaction over the deactivated catalyst was found,

$$A_{\lim} = \lim_{t \to \infty} A(t) = N_S \left(1 - \frac{Q}{K} \right) \frac{k_j}{k_p},\tag{4}$$

where A(t) is the integral reactant consumption/product release per catalyst unit [mol cm_{cat}⁻² or mol g_{cat}⁻¹] at time t, A_{lim} is the total reactant consumption/product release per catalyst unit [mol cm_{cat}⁻² or mol g_{cat}⁻¹] of the fresh catalyst, Q and K are the quotient and the equilibrium constant of the overall catalytic reaction [-], respectively.

Within the presented approach, the total (integral) reactant consumption/ product release over time, A(t), and its possible limit, A_{lim} , have been distinguished as resources of informative data [4]. Experimental and computational values of A(t) and A_{lim} as functions of catalyst pretreatment and regime parameters have been analysed using the literature data [5].

As the main result, it is shown that the catalyst lifetime can be enhanced by decreasing the steady-state (QSS) concentration of free active sites. This can be achieved by increasing the steady-state (QSS) reaction rate over the catalyst. This conclusion can be presented conceptually as follows: under some conditions, an elevated catalyst activity protects the catalyst from deactivation. Obviously this result can be applied as a recipe for extending catalyst life for catalytic systems accompanied by catalyst deactivation. These theoretical results are illustrated by computer simulations. Moreover, this idea was previously announced by Kagan et al. [6], based on experimental data in studies of the hydroformylation reaction of olefins, however with no theoretical explanation.

References

- [1] N.M. Ostrovskii, G.S. Yablonsky, React. Kinet. and Catal. Lett. 1989, 39(2), 287
- [2] N.M. Ostrovskii, "Kinetics of deactivation of catalysts. Mathematical models and their applications". Moscow, Nauka.2001, 334 pp (In Russian)
- [3] Z.J.G. Gromotka, G.S. Yablonsky, N.M. Ostrovskii, and D. Constales, Entropy. 2021, 23(7), 818
- [4] Z.J.G. Gromotka, G.S. Yablonsky, N.M. Ostrovskii, and D. Constales, Catalysts. 2022, 12, 1
- [5] N. Essayem, Y. Ben Taârit, C. Feche, P.Y. Gayraud, G. Sapaly, and C. Naccache, J. Catal. 2003, 219(1), 97
- [6] Y. Kagan, A. Rozovskij, E. Slivinskij, and G. Korneeva, Kinetika i Kataliz. 1987, 28, 150

Keywords

Catalytic cycle; Catalyst deactivation; Extending catalyst life.