Enhancing Gasoline Production from CO₂ Hydrogenation through optimizing ZnO-ZrO₂ Catalysts in tandem with HZSM-5 zeolite

Onintze Parra^{*}, Ander Portillo, Javier Ereña, Ainara Ateka

Chemical Engineering Department, UPV/EHU, P.O. Box 644 48080 Bilbao, Spain *Corresponding author: onintze.parra@ehu.eus

Highlights

- Gasoline yield was boosted by tuning ZnO-ZrO₂ catalyst.
- High conversion was achieved, and it was stable for more than 16 h.
- Highly isoparaffinic gasoline was obtained, with predominant C_5 and C_6 hydrocarbons.

1. Introduction

The increasing levels of CO₂ emissions and the threat of global warming have motivated carbon dioxide capture and utilization (CCU) technologies into the spotlight of environmental solutions. Among the diverse array of CO₂ valorization processes, the catalytic conversion of CO₂ holds particular importance, with a special emphasis on the generation of hydrocarbons. The direct synthesis of hydrocarbons from CO₂/CO hydrogenation involves two distinct stages: firstly, the synthesis of oxygenates (methanol/DME) from CO₂ and/or CO; and secondly, the subsequent *in situ* conversion of these oxygenates into hydrocarbons. This process is carried out with OX/ZEO tandem catalysts, combining a metal oxide and a zeolite [1]. Integrating these catalysts into a single phase confers a significant advantage by shifting the equilibrium of the oxygenates synthesis and boosting the conversion of CO₂ and CO [2]. Among the metallic catalysts utilized (OX), some stand out, such as In₂O₃, In₂O₃-ZrO₂, and ZnO-ZrO₂ [3,4] However, these catalysts are not yet optimized and still require refinement. In the context of hydrocarbon synthesis within the gasoline range, the predominant zeolite is HZSM-5 (ZEO) [5].

In this context, this work focuses on the improvement of the process by optimizing the OX catalyst. A mixture of CO_2 and $CO(CO_x)$ was fed and a tandem catalyst consisting of $ZnO-ZrO_2$ (OX) and a nanosized HZSM-5 (ZEO) was employed. The ratio between Zn and Zr was adjusted for enhanced efficiency. The four catalysts with different Zn/(Zn+Zr) relation (0.07, 0.15, 0.3 and 0.45) were thoroughly characterized, and their performance in gasoline synthesis was analyzed. Furthermore, the quality of the obtained gasoline was studied to provide a comprehensive understanding of the overall process.

2. Methods

Four different ZnO-ZrO₂ catalysts with different Zn/(Zn+Zr) relations were prepared using a coprecipitation method, denoted as 7ZZ, 15ZZ, 30ZZ, and 45ZZ, corresponding to Zn/(Zn+Zr) ratios of 0.07, 0.15, 0.3, and 0.45, respectively. For the second stage, a nano-sized HZSM-5 with a SiO₂/Al₂O₃ molar ratio of 371 was used (nH371). Characterization included X-ray diffraction (XRD) for structure analysis, X-ray fluorescence (XRF) for composition, temperature-programmed desorption with ammonia (TPD-NH₃) for acidity assessment, and N₂ adsorption-desorption for physical property evaluation. Reaction conditions were set at 420 °C, 50 bar, space time of 10 g_{cat}·h/mol_C, H₂/CO_x ratio of 3 and CO₂/ CO_x ratio of 0.5.

3. Results and discussion

The results from XRD characterization indicate that the metallic catalyst is primarily composed of a mixed oxide of Zn and Zr. As the amount of Zn increases, additional ZnO begins to appear in the structure, alongside the mixed oxide [6]. Furthermore, all physical properties (BET surface area, pore volume, and particle diameter) increase with the Zn fraction, influencing catalytic performance. In

Figure 1a, a maximum in C_{5+} hydrocarbon yield (20%) is observed at a Zn/(Zn+Zr) ratio of 0.3, correlating with the optimal combination of the mixed structure and pure ZnO. Additionally, methane yield is negligible across all catalysts.

Figure 1. (a) Influence of the Zn/(Zn+Zr) ratio on the yield of the products, (b) stability of CO_x conversion with TOS, (c) product distribution by carbon number with the 30ZZ/nH371 catalyst.

Regarding stability, all catalysts exhibit sustained CO_x (CO_2+CO) conversion without apparent deactivation over 16 hours of TOS (Figure 1b). However, 15ZZ and 40ZZ display an initial activation period during the first 2 hours. Nevertheless, the optimal catalyst 30ZZ/nH371 demonstrates remarkable stability. Analyzing the product distribution by carbon number with the 30ZZ/nH371 catalyst (Figure 1c), it is notable that C₅-C₆ hydrocarbons, especially isoparaffins, are predominant. There is a negligible presence of linear paraffins, olefins, or aromatics, making this product highly suitable for blending into the gasoline pool.

4. Conclusions

The Zn/(Zn+Zr) ratio significantly influenced structural composition and catalytic performance, with the 30ZZ catalyst exhibiting superior stability and yielding a predominant distribution of C_5 - C_6 hydrocarbons, particularly isoparaffins. Incorporating a nano-sized HZSM-5 zeolite further enhanced the desirable product profile. These findings highlight the importance of catalyst composition for optimal performance, showcasing promising implications for environmentally friendly hydrocarbon synthesis processes.

Acknowledgement

This work has been carried out with the financial support of the Ministry of Science, Innovation and Universities of the Spanish Government (PID2022-140584OB-I00); the Basque Government (Project IT1645-22), the European Regional Development Funds (ERDF) and the European Commission (HORIZON H2020-MSCA RISE-2018. Contract No. 823745). Onintze Parra is grateful for the financial support of the grant of the Basque Government (PRE_2021_1_0014). The authors thank for technical and human support provided by SGIker (UPV/EHU)

References

- [1] A. Ateka, P. Rodriguez-Vega, J. Ereña, A.T. Aguayo, J. Bilbao, Fuel Process. Technol, 233 (2022) 107310
- [2] O. Parra, A. Portillo, J. Ereña, A.T. Aguayo, J. Bilbao, A. Ateka, Fuel Process. Technol, 245 (2023), 107445
- [3] T. P. Araújo, A. Shah, C. Mondelli, J.A. Stewart, D. Curulla Ferré, J. Pérez-Ramírez, Appl. Catal. B Environ., 285 (2021) 119878
- [4] X.Y. Meng, C. Peng, J. Jia, P. Liu, Y.L. Men, Y.X. Pan, J. CO2 Util., 55 (2022) 101844
- [5] Z. Wen, C. Wang, J. Wei, J. Sun, L. Guo, Q. Ge, H. Xu, Catal Sci. Technol, 6 (2016) 8089-8097
- [6] J. Ding, Z. Li, W. Xiong, Y. Zhang, A. Ye, W Huang, Appl. Surf. Sci., 587 (2022) 152884

Keywords

CO2 valorization, Gasoline synthesis, ZnO-ZrO2 catalyst, HZSM-5 zeolite