Unprecedented promotion of ammonia cracking over Ru via surface H-scavenging, demonstrated by O₂-cofeed

Yi Qiu, Federico Abate, Alessandra Beretta*

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156, Milano, Italy

st aless and ra. be ret ta @polimi.it

Highlights

- The kinetics of NH₃ cracking on Ru-catalysts suffers from H* surface saturation.
- The promoting effect of H₂ removal was experimentally proven by simple O₂-cofeed.
- Modelling shows the huge potential of H₂-scavenging on NH₃ conversion on Ru.

1. Introduction

Ammonia is a potential green-hydrogen carrier; several favorable features (C-less nature, well developed production technology and existing distribution infrastructure) make it an ideal candidate for the chemical storage and distribution of renewable energy [1]. As a result, NH_3 cracking (the reaction needed to obtain H_2) is presently an open field of research regarding both catalysts and reactors. Ru is unanimously recognized as superior active metal and a variety of formulations have been studied in the literature [2]. Based on the literature and our background knowledge, it is herein recognized that the main kinetic bottleneck of the reaction is the surface saturation by H* species [3]. In this work, we analyze the implications of such fundamental kinetic finding and explore by modelling and experiments the potential behind the concept of H-scavenging.

2. Methods

Among several Ru-supported catalysts, 1% Ru/MgAl₂O₄ was selected as reference; it was prepared via an incipient wetness impregnation, using Ru(NO)(NO₃)₃ as precursor, and reduced in flowing H₂ at 450 °C. NH₃ decomposition was tested in micro-fixed bed unit, with diluted feeds (0.3–2.5% NH₃ in He). H₂-cofeed tests were performed up to 25%, to characterize the kinetics under fully representative conditions. O₂-cofeed tests were also performed (0.1–0.5% O₂, 1% NH₃ in He) to demonstrate the positive effect of H₂-subtraction. All the experiments were performed at 20,000 Nl/h/kg_{cat}. The modelling analysis was based on 1D pseudo-homogeneous isothermal and isobaric reactor model.

3. Results and discussion

A broad kinetic investigation was performed over the Ru/MgAl₂O₄ catalyst. In line with the literature, an apparent negative order with respect to NH₃ was revealed by experiments at increasing NH₃ feed concentration (Figure 1). However, as shown in Figure 2, the results of experiments where NH₃ concentration was kept constant and H₂ was added to the feed showed the strong inhibiting effect of H₂. As a matter of fact, the kinetic analysis of the entire bulk of data showed that these and other effects can be fully reconciled with a simple power-law model of the form: $r \propto P_{NH3}/P_{H2}^{1.5}$, that is consistent with the hypothesis that the rate determining step of NH₃ cracking is the second extraction of H*, as proposed by [4], being H* the most abundant surface intermediate.

Aim of this work is to explore the potential benefit of removing the condition of surface saturation by the H* species. This was first investigated by modelling; at this scope the rate law was re-written in the form: $r = k(T) \frac{P_{NH3}}{(1+k_{H2}P_{H2})^{1.5}}$ (Eq. 1)

that has no direct mechanistic derivation but reflects the correct kinetic dependences and is numerically more robust than the power-law model. Eq.1 was adapted to the data. Figures 1 and 2 show the model simulations of the measured effect of NH_3 feed concentration and H_2 -cofeed as solid lines, together with the parameters estimates; besides, Figure 1 extrapolates the simulation up to the condition of pure

 NH_3 feed. The kinetic effect produced by H_2 -inhibition is dramatic since the NH_3 conversion curves shift by several hundred degrees when passing from highly diluted feed (0.3% to 2.5%, experiments and model) to the pure NH_3 feed. In the latter case, given the large extrapolation from the experimental campaign on the Ru/MgAl₂O₄ catalyst, we have also reported as a qualitative comparison the performance of a commercial Heraeus catalyst with similar composition, tested in an independent study [5].

The modelling exercise of predicting the performance of the catalyst under the ideal condition of H*coverage = 0 was done by assuming K_{H2} =0 in rate eq. (1). The prediction is reported in Figure 3 (blue line), where (given the pure first order dependence of the new rate law) the calculated conversion curve is concentration independent; a condition dramatically different from the H₂-inhibited response of the catalyst (black lines). The simulations show that the potential advantage of full H-scavenging is enormous: at 250°C, the benefit on the turnover frequency amounts to a factor of 14 at 1% NH₃ feed, but this factor grows to over 50 at 10% NH₃ and over 600 for pure NH₃ feed.

To demonstrate experimentally the concept, we performed simple O_2 -cofeeding experiments, where H_2 could be fully swept from the surface by consecutive oxidation. Figure 3 shows the results of experiments where the diluted NH₃ feed (1% in He) was enriched with small amounts of O_2 (0.1, 0.25, 0.5%). Experiments were performed at varying temperatures; Figure 3 reports the measured conversion of NH₃ at the very temperature level where O_2 conversion was complete and no H_2 was produced (thus the condition where the consumption of H_2 by oxidation perfectly matched the production by NH₃ cracking). The measured NH₃ conversions were much higher than those measured in the reference 1% NH₃ feed test and very nicely approached the predicted ideal conversion at zero H-coverage (blue line).

4. Conclusions

We demonstrate that a huge margin of improvement of NH_3 -cracking kinetics lies in the elimination of the H*-saturation. This concept (here demonstrated by simple O₂-cofeed tests) opens to the design of multifunctional reactors where H₂ is removed from the Ru sites by separation (membrane reactors), H-storage (H-sorbents), chemical consumption (coupling of NH_3 cracking with H₂-consuming reactions), H⁺ removal (PEM-fuel cell): a boundless playground for chemical reaction engineering.

References

- S. R. Kulkarni, J. Cerillo, S.P. Katikaneni, S.N. Paglieri, B. Solami, J. Gascon, P. Castaño, Catal. Sci. Technol. 13 (2023) 2026–2037
- [2] J.E. Lee, J. Lee, H. Jeong, Y.K. Park, B.S. Kim, Chemical Engineering Journal 475 (2023) 146108
- [3] J.L. Cerrillo, N. Morlanés, S.R. Kulkarni, N. Realpe, A. Ramírez, S.P. Katikaneni, S.N. Paglieri, K. Lee, A. Harale, B. Solami, A. Jamal, S. Mani Sarathy, P. Castaño, J. Gascon, Chemical Engineering Journal 431 (2022) 134310
- [4] D. A. Hansgen, D. G. Vlachos, J. G. Chen, Nature Chem 2, (2010) 484–489
- [5] F.S. Franchi, M. Ambrosetti, A. Beretta, G. Groppi, E. Tronconi, in preparation.

Keywords

Hydrogen production; ammonia decomposition; O₂ as H₂-scavenge