Investigating the Reduction Half-Cycle of Standard SCR at Low and High Temperature: Influence of HTA and H₂O

<u>Nicole Daniela Nasello¹</u>, Umberto Iacobone¹, Andrea Gjetja¹, Isabella Nova¹, Enrico Tronconi^{1*} Rohil Daya², Lai Wei², Hongmei An², Krishna Kamasamudram²

1 Laboratory of Catalysis and Catalytic Processes, Politecnico di Milano, I-20156 Milano, Italy 2 Cummins Inc., 47201 Columbus, IN, USA

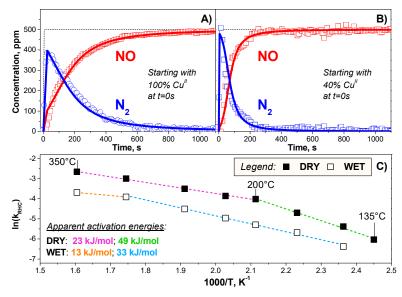
*Corresponding author: <u>enrico.tronconi@polimi.it</u>

Highlights

- The overall reducible Cu^{II} fraction and the RHC rates are unaffected by HTA.
- H₂O inhibits the Cu^{II} reduction rate.
- At low- and high-T, the reduction of Cu^{II} sites proceeds according to the same mechanism.
- Transient response methods effectively assess the RHC mechanism.

1. Introduction

Despite the recent strides in meeting the strict environmental standards, nitrogen oxides (NOx) emissions from Diesel engines still represent a concern. Nowadays, their reduction is accomplished through the so-called NH₃-SCR (Selective Catalytic Reduction) technology: this involves the injection of a urea-based solution in the presence of a metal-exchanged zeolite [1,2]. Notably, copper-based catalytic systems are preferred for applications demanding high de-NOx activity, selectivity, and hydrothermal stability. While the involvement of Cu sites in a redox cycle (*Reduction Half Cycle*, RHC: Cu^{II} \rightarrow Cu^I; *Oxidation Half Cycle*, OHC: Cu^I \rightarrow Cu^{II}) during the Standard SCR reaction is widely acknowledged [1-4], certain aspects, such as the influence of temperature, hydrothermal aging (HTA) and H₂O content still require further clarification. In this context, we systematically explore the effects of such parameters on a Cu-SSZ-13 catalyst in order to enhance the understanding of the RHC.


2. Methods

In this work, an experimental campaign is performed on a state-of-the-art Cu-SSZ-13 catalyst (Cu_{tot} by ICP-analysis: ~2.4% w/w) subjected to three different hydrothermal aging levels: i) *degreened* sample (DG) - 550°C for 5h; ii) *mild-aged* sample (MA) - 650°C for 5h; iii) *aged* sample (AG) - 650°C for 50h. The samples are tested in the form of powder (32 mg mixed with cordierite up to 130 mg; placed in a quartz tubular microflow reactor) according to the following protocol: i) pre-oxidation at 550°C in 8% O₂ to clean and oxidize the catalyst; ii) isothermal pre-adsorption of NH₃ (500 ppm) until saturation; iii) NO+NH₃ (both 500 ppm) isothermal reduction of Cu^{II} sites. Both dry and wet conditions (H₂O=0-2-5% v/v) are adopted to assess the role of water in RHC across the 135-350°C T-range. A gas hourly space velocity (GHSV) of 266250 Ncc/h/g_{cat} is selected. Consistent with previous publications [3,4], we kinetically analyze the obtained experimental data by means of a transient integral redox model which considers the RHC rate as: i) 0th order dependent on the NH₃ concentration; ii) 1st order dependent on the NO concentration; iii) 2nd order dependent on the Cu^{II} fraction.

3. Results and discussion

Figure 1A shows the outlet concentration profiles of NO and N₂ obtained from NO+NH₃ reduction of Cu^{II} sites at low-T (example at 150°C, DG sample). As observed, after NH₃ preadsorption (t=0 s), NO is consumed along with a mirror-like production of N₂ (peak of ~400 ppm). In line with the literature [2-4], we confirm the ability of the NO+NH₃ mixture to completely reduce the catalyst sites according to a well-established equimolar stoichiometry (Cu^{II}:NO:N₂=1:1:1). Also, the kinetic analysis reveals an excellent correspondence between experimental data (*symbols*) and model fit (*solid lines*) upon assuming the RHC rate equation described in Section 2. The same methodology is applied at higher

temperatures (up to 350° C). The NO+NH₃ mixture is still able to fully reduce the catalyst according to the same equimolar stoichiometry, even if with a higher rate. Notably, as long as enough NH₃ is adsorbed on the catalyst surface, the same kinetic dependencies already validated at low-T also apply at higher temperature, where a good match between experimental and model profiles is still observed. See Figure 1B for an example at 300°C on the DG sample (similar results are obtained on all the tested samples). The estimates of the apparent reduction rate constants (k_{RHC}) are displayed in Figure 1C as Arrhenius plots. Remarkably, we reveal the RHC to be inhibited by the presence of water (in line with DFT calculations by Contaldo et al. [5]). Figure 1C suggests that, particularly under wet conditions, no alteration in the RHC mechanism occurs. Indeed, in contrast with dry conditions where two distinct regimes are clearly evident (above and below 200°C), both low and high temperature reduction constants well align along the same linear correlation, at least up to 300°C. Additionally, by replicating the same experiments on DG, MA and AG samples we also confirm the RHC to be unaffected by the catalyst aging level, in line with previous studies [3].

Figure 1. Example of NO and N₂ transients from RHC protocol over DG sample at **A**) 150°C and **B**) 300°C. Feed: H₂O=O₂=0% v/v, NO=NH₃=500 ppm. *Symbols*: experimental data. *Solid lines*: model fit. **C**) Arrhenius plot of the estimated k_{RHC} values on a DG sample, T-range=150-350°C, H₂O=0-2% v/v.

4. Conclusions

In this work we investigate the reduction half-cycle (RHC) of Standard SCR reaction over a typical Cu-SSZ-13 catalyst. In particular, we assess the effects of hydrothermal aging, H₂O content and temperature on the reaction chemistry. By testing three samples with different aging level (*i.e.*, DG, MA and AG samples), we confirm the RHC rate to be unaffected by HTA, in line with previous findings [3]. In addition, we experimentally and kinetically assess the inhibiting role of water on the RHC, as also observed in the literature and supported by DFT calculations [5]. Remarkably, under wet conditions and as long as enough NH₃ is stored on catalyst surface, we reveal for the first time the Cu^{II} reduction mechanism to be unaffected by temperature. In view of the upcoming stricter environmental regulations, these results are an essential step to unveil the Standard RHC-SCR chemistry and give guidance to the automotive industry for the development of new generations of aftertreatment systems and catalysts.

References

- [1] C. Paolucci et al., Science 357 (2017) 898–903
- [2] D. Deka et al., Appl. Catal. A: Gen. 640 (2022), 118656
- [3] R. Daya et al., ACS Catal. 12 (2022), 6418–6433
- [4] N.D. Nasello et al., ACS Catal. 13 (2023), 2723-2734
- [5] G. Contaldo et al., ChemCatChem 15 (2023), e202300673

Keywords

NH3-SCR; Reduction half-cycle; Transient kinetic analysis; HTA and H2O effects