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Highlights 

• Autonomously identify reaction mechanisms from integral reactor data 

• Robust against noise, missing data, and sensor drifts – ideal for real-world data sets 

• Physically sound and fully interpretable 

 

1. Introduction 

Rational reactor design requires a reliable mechanistic understanding of the reaction kinetics. In this 

regard, machine learning has emerged as a valuable tool that automates mechanism discovery, reduction, 

and numerical acceleration [1]. The performance of neural networks for these applications is 

significantly improved by implementing a priori physical knowledge in the model's structure [2, 3]. In 

this work we focus on implementing the atom balance in neural networks. Previously, this has either 

been done explicitly through a soft constraint in the loss function, or a post-processing step, or indirectly 

by embedding the stoichiometric matrix into the model's structure. However, in the case of mechanism 

discovery and reduction, the stoichiometric matrix is generally unknown and subject to optimization. 

We propose a dedicated element balance layer (shown green in Fig. 1) for neural networks models of 

chemical kinetics that enforces atom conservation as a hard constraint without requiring the 

stoichiometric matrix. We implement this layer into the chemical reaction neural network (CRNN) 

recently developed by Ji and Deng [4] and demonstrate that enforcing the atom conservation greatly 

increases the model's ability to identify physically sound reaction mechanisms from low quality data [5].  

Figure 1. The mechanism discovery workflow uses concentration measurements from an integral reactor to train the atom 

conserving chemical reaction neural network (trainable parameters are highlighted in red). It encodes the law of mass action, 

the Arrhenius law and in contrast to the standard CRNN also the atom conservation. The trained model is directly equivalent 

to a classic microkinetic mechanism and is easily implemented in reactor simulations. 

2. Methods 

The CRNN is a digital twin of the classic chemical reaction network that encodes the Arrhenius equation 

and the mass-action law in a neural network. To learn from concentration data, it is trained in the context 

of a neural ODE, i.e. wrapped with an ODE solver. The resulting CRNN concentration profiles are 

compared to the provided concentration data. We use the Julia language implementation of CRNN 

available at github.com/DENG-MIT/CRNN. It uses the differential programming package 

DifferentialEquations.jl to enable backpropagation of gradients through the ODE solver. The mean 

absolute error loss of the normalized concentrations is used and minimized using the ADAM optimizer 

http://github.com/DENG-MIT/CRNN


to adjust the CRNN parameters. The parameters B* of the newly proposed atom conservation layer are 

determined in a preprocessing step as the reduced column echelon form basis of the molecular matrix 

null space, i.e. computed within a single line of MATLAB code. 

3. Results and discussion 

Embedding the atom balance into neural networks facilitates mechanism discovery. One of our test cases 

is biodiesel production where embedding the atom balance increases the model's robustness against 

noise and offsets in the training data. Concentration data are obtained by integrating the 

transesterification kinetics of palm oil derived palmitin glycerides (TG, DG, and MG) with methanol as 

described by Darnoko and Cheryan [6] for 20 different initial compositions. To emulate real 

experimental data, we add 5% gaussian noise and in the case of reactant TG an offset of 0.2 to simulate 

a faulty sensor calibration. 

Figure 2. Biodiesel production concentration profiles obtained from mechanism discovery by standard CRNN (red) and atom 

conserving CRNN (AC-CRNN, blue) using synthetic measurements from 20 integral reactor experiments (symbols). 

As the standard CRNN model adapts to the erroneously high concentrations of the reactant TG, an 

excessive amount of the other glycerides DG and MG is formed. This leads to an error in the atom 

balance by more than 20%. The newly proposed atom conserving CRNN (AC-CRNN) is stable towards 

the sensor offset (Fig. 2) and recovers the correct underlying mechanism with a perfectly closed atom 

balance. Additionally, it has 40% fewer parameters to optimize, resulting in faster training times. 

4. Conclusions 

Chemical reaction neural networks have established as the most advanced tool for autonomous 

mechanism discovery and are used in many fields, especially (bio-)chemical engineering [4,7]. While 

they encode the law of mass action as well as the Arrhenius law, mass- and atom conservation are still 

violated. We enforce the fundamental law of atom conservation by adding a dedicated neural network 

layer which can be interpreted as constraining stoichiometric coefficients to physically realizable 

combinations. The resulting atom conserving chemical reaction neural networks improve training 

stability and speed, offer robustness against noisy and missing data, and require less data overall. As a 

result, we anticipate increased model reliability and greater utilization of the potential of real-world data 

sets, which will assist chemical reaction engineers. Finally, our proposed element conservation layer is 

compatible with any feed forward neural network that predicts kinetics and should therefore be useful 

also for surrogate modeling and mechanism reduction. 
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