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Highlights 

• Reactors cofiguration investigation 

• Products selectivity and distribution investigation 

• Adding DMR and WGS reactor to the system as a novel scenario  

 

1. Introduction 

The escalating global demand for fuels alongside the imperative to diminish greenhouse gas levels has 

sparked significant interest among researchers in converting CO2 into hydrocarbons through 

hydrogenation processes. This conversion, particularly into liquid fuel range hydrocarbons, can be 

achieved using either a methanol-mediated pathway or Fischer-Tropsch Synthesis (FTS). In the 

methanol mediated process, CO2 is first turned into methanol and subsequently processed into 

hydrocarbons [1, 2, 3]. For converting CO2 through the Fischer-Tropsch (FT) process two primary 

approaches have been explored: the direct route and the indirect route. The indirect route involves two 

separate reactors, initially converting CO2 into CO via the RWGS reaction and subsequently employing 

the produced CO in the traditional FT synthesis. Alternatively, a more challenging route involves the 

direct conversion of CO2 with H2 into hydrocarbons. However, this method is considerably more 

intricate due to various constraints, necessitating a catalyst capable of facilitating both CO2 into CO 

conversion and the FT reactions [4]. The direct approach involves merging CO2 reduction into syngas 

using the reverse water gas shift (RWGS) Reaction Eq.1 and the subsequent hydrogenation of CO to 

hydrocarbons (HCs) via Fischer-Tropsch Synthesis (FTS) Eq.2 and 3 in the same reactor system [5, 6, 

7]. 

1) CO2 + H2 ⇌ CO + H2O                                                                                                              (1) 

2) nCO + (2n+1)H2 → CnH2n+2 + nH2O                                                                                         (2) 

3) nCO + 2nH2 → CnH2n + nH2O                                                                                                   (3) 

This study is focused on the direct route despite its many challenges. The reasons are increasing of 

energetic efficiency, elimination of the cooling system in the whole process and specially its cost-

effectiveness compared to the indirect route [8, 9]. In addition, there is a lot of room for innovation in 

this pathway compared to indirect. This paper is supposed to present a novel approach to solve the 

problem of the main unwanted byproduct, methane. 

2. Methods 

All the simulations will be done by Aspen Plus.  

3. Results and discussion 

The results of this study would be a comparison between different CO2 FTS process routes and 

configurations to realize that which route with which configuration will lead to lower methane selectivity 

and higher fuel yields. In each process concept the selectivity of main products and by-products such as 

methane will be investigated to see how the selectivity and yield of main products will be enhanced. 

Also, the in-situ and ex-situ water removal system for increasing the process efficiency will be studied. 

In addition, to solve the problem of the produced methane (unwanted byproduct), a new scenario will 

be studied. In this scenario the produced methane is separated and converted to CO and H2 through Dry 

Methane Reforming (DMR) process. The produced H2 is recycled as a part of the feed and the DMR is 



followed by a WGS reactor to produce CO2 and H2. The required water for WGS reaction is provided 

from water removal system. Finally, the produced CO2 and H2 are recycled to the beginning of the 

process as feed (Figure 1). The obtained results of this study will be compared with the results from 

Kamkeng and Wang’s work to justify this scenario. They studied three different process configurations 

for direct CO2 FTS [10]. 

 

Figure 1.  Direct FTS process configuration with additional DMR and WGS reactor. 

4. Conclusions 

From the results comparison, it will be concluded that in which route with which operating conditions 

and configurations the best products selectivity and distribution will be obtained. Also, the best way for 

water removal can be determined. The investigation of the mentioned scenario in this study (adding 

DMR and WGS) will show if utilization of the unwanted produced methane can be feasible and 

affordable or not.  
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