
Property Estimations with Chemical Accuracy for Industrially Relevant Molecules 

Using Geometric Deep Learning 

Maarten R. Dobbelaere1, István Lengyel1,2, Christian V. Stevens3, Kevin M. Van Geem1* 

1 Laboratory for Chemical Technology, Ghent University, Ghent, Belgium; 2 ChemInsights LLC, Dover DE, 

United States of America; 3 SynBioC Research Group, Ghent University, Ghent, Belgium 

*Corresponding author: Kevin.VanGeem@UGent.be  

Highlights 

• Open-source property estimation tool for 2D and 3D molecular data. 

• New large property databases with industrially relevant compounds and properties. 

• Error below 2.5 kJ/mol for high level-of-theory enthalpy of formation predictions. 

• Using the molecular geometry in machine learning is essential for high accuracy. 

 

1. Introduction 

Knowledge of physicochemical properties is a prerequisite in many chemical engineering tasks, such as 

developing kinetic models or optimizing industrial processes [1]. Ab initio modeling of thermochemical 

properties (e.g., enthalpy of formation) is a well-established method that can reach chemical accuracy 

(~4 kJ/mol) for a wide range of molecules. The drawback of this method is the computational expense, 

which limits its use for large numbers of molecules. Faster methods are density functional theory (DFT) 

modeling or group contribution (GC) methods. While DFT calculations are also reliable for a vast 

application domain, the accuracy of the results is lower. GC approaches, on the other hand, can reach 

chemical accuracy but are very limited in applicability. In the past decade, machine learning (ML) 

models have been developed to predict thermochemical properties, aiming at chemical accuracy for a 

broad range of molecules at a low computation expense [2]. 

ML models are not yet reliable enough to replace established property estimation methods in the 

chemical industry. This is because they are typically trained on artificial databases with application 

ranges incompatible with industrial requirements [3]. To overcome this problem, we have created 

ThermoG3, an extensive database containing high and low-level-of-theory ab initio thermochemistry 

data of 53,000 molecules with industrial relevance. This dataset is used to train a newly developed ML 

model from the message-passing neural network (MPNN) family that can handle molecules in 2D and 

3D format. Since molecular energetics depend on the spatial arrangement of the atoms, it is essential to 

include 3D information.  

2. Methods 

A message-passing neural network (MPNN) was constructed to create the structure-property 

relationships. This MPNN treats a molecule mathematically as a three-dimensional graph with nodes 

(atoms) and edges (bonds). The edges are directed, meaning that a chemical bond is represented by two 

directed edges. The MPNN is initialized with node feature vectors that describe the atoms and bonds. 

Two feature vectors are compared: atomic radial distribution functions (RDF) and simple atomic 

features (Features), such as atomic weight, number of neighbors, etc. In the message-passing phase, 

learned bond feature vectors are iteratively updated using messages from atoms in the neighborhood of 

the considered atom. This neighborhood is defined as a sphere with a cutoff radius around the starting 

atom of the directed edge so that messages can also be sent from atoms not covalently bonded. In the 

readout phase, a molecular representation is created from the learned atomic feature vectors. The learned 

molecular representation is used as input for a deep neural network. 

A machine learning technique called Δ-learning is applied. Herein, the difference between low-level-of-

theory data (B3LYP) and high-level-of-theory data (G3MP2B3) is learned with the aforementioned 

machine learning algorithm that uses the 3D structure of the molecule as input. ThermoG3, an extension 

of the earlier reported dataset by Plehiers et al. [4], is used for training. It consists of 53,000 organic 



compounds ranging in size from 1 to 23 heavy atoms and ten different types of heteroatoms (O, N, S, F, 

Cl, Br, Ge, B, Si, P). The standard enthalpy of formation at 298 K is calculated at B3LYP/6-31G* and 

G3MP2B3 levels for all compounds. 

3. Results and discussion 

The importance of using 3D information in the MPNN is investigated by training different model 

modifications on the ThermoG3 database and evaluating them on a fixed external test set. We consider 

two baseline models: an MPNN that only uses the 2D molecular graph and an MPNN that uses the 3D 

molecular graph but a different message-passing function. In that baseline model, messages can only 

come from atoms that are covalently bonded to the starting atom of the directed edge. The other models 

are as described above but differ in cutoff radius. The results of this investigation are shown in Figure 

1a. It is shown that the 2D baseline model performs poorly compared to the 3D model, but also that the 

appropriate choice of the cutoff radius and initial features is beneficial for the model performance. Figure 

1b shows the parity plot and error distribution for the 3D MPNN with simple atomic features and a 

cutoff radius of 2.1 Å and for the initial B3LYP calculations. The ML model can achieve chemical 

accuracy without any outliers, whereas the B3LYP calculations have a large spread and a tendency to 

overpredict the enthalpy of formation. Since this Δ-ML technique still requires DFT calculations as 

input (3D molecular geometries), it can be seen as a correction method that enables researchers to rapidly 

estimate the enthalpy of formation for a wide application range with chemical accuracy.  

 

Figure 1.  Performance of ML model on enthalpy predictions. (a) Effect of using geometric information on the predictive 

performance. (b) Parity plot and error distribution with a geometric MPNN that uses a cutoff radius of 2.1 Å compared to 

B3LYP calculations. 

4. Conclusions 

A versatile ML method for physicochemical property estimation that can effectively handle 2D and 3D 

molecular information is developed and validated. It was demonstrated for thermochemistry that using 

geometric information significantly improved the predictive performance. Using this Δ-ML method, the 

enthalpy of formation can be predicted with chemical accuracy for an extensive range of industrially 

relevant molecules at the cost of DFT calculations. 
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