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Highlights 

• Developed a comparative study for different hybrid modelling strategies. 

• Estimating dynamics of key parameters offers high quality, interpretable solutions. 

• The discrepancy model provided no improvement over the PSSH benchmark model. 

• The two-step approach learnt soft constraints imposed through parameter estimation. 

1. Introduction 

Historically, mathematical modelling has dominated the field of chemical reaction kinetics, where 

insight into the complex relationships held between predictor and response matrices are expressed such 

that any physical phenomena of interest can be described. This is largely achieved through developing 

systems of ordinary differential equations (ODE) representing the system under study. This allows for 

rapid predictions of current and future states, control, optimisation, and accelerated system design 

(reduced experimental burden). It is common however, within industrial processes, the nature of the 

phenomena is too complex to adequately model via first principles and inductive bias (assumptions) 

must be introduced to make simplifications. To circumvent this issue, the paradigm of machine learning 

can be exploited to account for the non-linearities within the process and mimic the dynamic system. 

This is accompanied by further problems such as lack of interpretability and data quality issues. 

It is therefore intuitive to combine the aspects of data-driven and physical modelling to account for the 

flaws present within each methodology. This technique is named hybrid modelling and exists such that 

the kinetic component retains the underlying structure of the reaction network (ODEs), and the data-

driven component accommodates for any missing information. Within the literature, two major forms 

of hybrid models exist: (1) estimating dynamic changes within key parameters of a kinetic model, using 

machine learning to capture the non-linear properties of the parameters (increased interpretability as no 

change to the structure is made), and (2) modifying a pre-defined kinetic structure with an unknown 

data-driven parameter that accounts for missing information. This allows for incomplete or incorrect 

model structures to be rectified and is referred to as hybrid discrepancy modelling. 

2. Methods 

This study focuses on a C16 hydroisomerisation reaction network (Figure 1) in which a rigorous 

microkinetic model was developed and reduced by (Vega-Ramon et al., 2023) and used to generate 8 

training datasets with varying Pd catalyst concentrations, 𝐶 and initial mass fractions of 𝐶16 (𝑥𝑐16), 

mono branch products (𝑥𝑚𝑜), multi branch products (𝑥𝑚𝑢𝑙) and cracking byproducts (𝑥𝑐𝑛). A further 3 

testing datasets were generated to simulate real experimental conditions of 𝑥𝑐16, 𝑥𝑚𝑜, 𝑥𝑚𝑢𝑙 , 𝑥𝑐𝑛 = 0 and 

𝐶 = {0.1, 0.3, 0.5} wt.%. The pseudo steady state hypothesis (PSSH) was applied to simplify the model, 

and the result used as a benchmark to represent more traditional modelling efforts. 

 

Figure 1: C16 hydroisomerisation reaction network and a schematic of the hybrid model strategy. 



We can define two strategies for solving hybrid models being the one and two-step approaches. The 

two-step approach is defined by initially discretising the set of parameters, which are required to be 

modelled by machine learning, as constants over set time intervals. Once the optimal solution for the 

parameters was found, a neural network (ANN) was employed to learn the correlations between the 

input data (state parameters and catalyst concentration) and the time varying parameters that define the 

system until the subsequent timestep. The one-step approach differs in that we simultaneously estimate 

the network parameters and kinetic constants rather than separating it into two tasks. In this work, 

automatic differentiation is used in conjunction with gradient descent to estimate all parameters. 

3. Results and discussion 

A multistep ahead method is used to develop concentration profiles from a set of initial conditions. The 

predictive capabilities of the PSSH, two-step discrepancy, one-step and two-step time varying models 

are presented in Table 1. 

Table 1. MAPE and MAE testing results averaged across all testing batches for different models. 

Model Mean average percentage 

error (MAPE) / % 

Mean absolute error        

(MAE) 

𝒙𝒄𝟏𝟔 𝒙𝒎𝒐 𝒙𝒎𝒖𝒍 𝒙𝒄𝒏 𝒙𝒄𝟏𝟔 𝒙𝒎𝒐 𝒙𝒎𝒖𝒍 𝒙𝒄𝒏 

PSSH (kinetic) 10.3 6.0 71.1 18.9 0.030 0.023 0.030 0.022 

Discrepancy (hybrid) 15.8 12.4 36.8 14.0 0.048 0.049 0.008 0.018 

One-step (hybrid) 4.6 4.5 65.0 10.3 0.017 0.016 0.010 0.009 

Two-step (hybrid) 7.9 7.2 16.7 10.0 0.023 0.030 0.006 0.010 

With regards to the hybrid configurations, the discrepancy model performed the worst with MAE values 

often 80% larger than the rest with the exception of multi branch predictions. This can be explained by 

the structure of the ODE system not missing information and the uncertainty and error being held within 

the kinetic parameters themselves. The benchmark PSSH model was seemed competent in its predictions 

and predicted the mono branch profiles with high accuracy, however it struggled to represent the 

cracking byproduct and multi branch profiles. Both of the time varying parameter hybrid models 

simulated all mass fraction profiles with a high degree of accuracy and show similar performance when 

compared to one another. The large percentage error associated with the one-step approach is an artifact 

of values close to zero giving rise to large errors. The absolute MAPE/MAE improvement over the 

benchmark PSSH model for the one and two-step approach is 5.5 %/0.013 and 11.7 %/0.009. The two-

step approach is restricted by the parameter estimation solution, however learns the soft constraints 

imposed through parameter estimation. The one-step approach can theoretically achieve lower errors, 

however, does not learn any physical constraints and generates more rapid changes in gradients. 

4. Conclusions 

In conclusion, three hybrid model configurations were explored and compared to a traditional modelling 

technique (PSSH) for the simulation of a C16 hydroisomerisation reaction network. The time varying 

strategy outperforms the benchmark model, offering improvements in MAE over 34%. The discrepancy 

model failed to improve upon the benchmark model and provided a lower quality representation of the 

system. Through the use of parameter estimation, automatic differentiation, neural networks, and kinetic 

modelling, high quality solutions that incur low computational expense can be attained which offer 

increased interpretability as opposed to black box modelling techniques. This study outlines the potential 

for hybrid modelling within the chemical reaction kinetics and on a wider scale. 
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