In-situ measurement of oxygen release from Ag/SrFeO_{3-δ} materials for chemical looping catalysis

A.R.P. Harrison¹, S.M. Fairclough², E.A. Willneff³, A. Britton³, E.J. Marek^{1*}

1 Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK; 2 Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge; 3 School of Design, University of Leeds, 211 Clarendon Road, Leeds, UK

*Corresponding author: arph2@cam.ac.uk

Highlights

- Reduction of Ag/SrFeO_{3- δ} measured using TEM-EELS and NAP-XPS at elevated temperature (400-700°C).
- Reduction of bulk SrFeO_{3- δ} occurs throughout the sample and is not localised near Ag.
- Presence of Ag results in formation of transient Ag-O species at the cost of surface O.

1. Introduction

Chemical looping selective oxidation offers a promising alternative to conventional oxidation catalysis. In chemical looping catalysis, a hydrocarbon stream is fed over a reactive metal oxide (termed an oxygen carrier, OC, *e.g.* SrFeO_{3- δ}) impregnated with a metal catalyst (*e.g.* Ag). Lattice oxygen is transferred from the OC to the active site of the catalyst to react with the hydrocarbon and form the desired product. The feed is then switched to air to regenerate the OC and close the chemical loop, giving the safety advantage of inherent separation between the hydrocarbon and gaseous oxygen. Recent work [1] has shown that in addition to catalysing oxidation reactions, Ag increases the rate of oxygen release and reuptake from SrFeO_{3- δ} at low temperatures (\leq 400°C). However, the role of Ag in enhancing the rate of oxygen transport is poorly understood. Here, to elucidate the interactions between SrFeO_{3- δ} during redox.

2. Methods

Strontium ferrite (SrFeO_{3- δ}) was produced by solid state synthesis from stoichiometric amounts of SrCO₃ (Sigma Aldrich, >98%) and Fe₂O₃ (Honeywell Fluka, >99%), followed by calcination at 1000°C for 12 h, then sieved to 180-355 µm. Samples of SrFeO₃ were impregnated with AgNO₃ solution, then dried, and calcined for 5 h at 650°C, with target loading 15wt% Ag (designated Ag/SrFeO_{3- δ}).

Transmission electron microscopy (TEM) was performed using a Thermo Fisher Scientific Spectra 300 operating at 300 kV with energy dispersive X-ray spectra (EDS) and electron energy loss spectra (EELS) collected in parallel. Powder samples were suspended in CHCl₃ (Sigma Aldrich, >99%), deposited onto a heating chip (DENSSolutions Wildfire), and inserted into the TEM. Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) was performed using a SPECS EnviroESCA, with pelletised samples placed on an electrically heated stage, and sample chamber atmosphere set to 0.25 mbar H₂ or 1 mbar O₂ by supplying 5% H₂ in N₂ or synthetic air (all gases BOC). Scans of the O1s region were collected and calibrated with respect to the adventitious carbon C1s peak at 248.8 eV.

3. Results and discussion

Figure 1. In-situ TEM of Ag/SrFeO₃₋₆, EDS map indicating Ag distribution, and EELS maps showing local oxidation state.

In-situ TEM measurements of a thin section of Ag/SrFeO_{3- δ} are shown in Fig. 1. At each point within the sample, EELS was applied to estimate the local Fe⁴⁺/Fe³⁺ ratio, and hence, the oxidation state. Upon heating from 20°C to 700°C, the material became reduced, with a reaction front moving inwards from the edge of the sample. Reduced regions of Ag/SrFeO_{3- δ} were not localised around particles of Ag, suggesting rapid transport of O²⁻ ions within the SrFeO₃ lattice.

From NAP-XPS scans of SrFeO_{3- δ} at room temperature (shown in Fig. 2a), four distinct O species were detected: SrFeO₃-lattice O, SrO-lattice termination O, surface-O species, and impurities (-CO₃, -OH, *etc.*). The spectrum for Ag/SrFeO₃ showed an additional peak at intermediate binding energy between SrO and surface O, ascribed to transient Ag-O species (Fig. 2d).

Upon heating in 0.25 mbar H₂, surface-O species were removed from SrFeO_{3- δ} at *T* above 360°C, whereas, for Ag/SrFeO_{3- δ}, its Ag-O species started desorbing at ~180°C, followed by surface-O from SrFeO₃ above 300°C (Figs. 2g and 2i). At ~430°C (Figs. 2b and 2e), Ag/SrFeO_{3- δ} showed a lower fraction of surface-O than SrFeO_{3- δ} (11.5% *vs* 28.3%), suggesting that Ag aidd the removal of oxygen from SrFeO₃. Both samples also show a shift of ~+1.5 eV in the binding energy of SrFeO₃ lattice oxygen, corresponding to a change in Fermi energy for the reduced oxide [2]. When the gas was switched from H₂ to 1 mbar O₂, surface-O species rapidly re-formed on both samples (Figs. 2c and 2f), and remained stable throughout cooling to room temperature (Figs. 2h and 2j), whereas to Ag-O species in Ag/SrFeO_{3- δ}, which continue to recover slowly during cooling.

Figure 2. NAP-XPS O1s spectra of SrFeO_{3-δ} and Ag/SrFeO_{3-δ} under 0.25 mbar H₂ and 1 mbar O₂, showing changes in O species.

4. Conclusions

Oxygen release from Ag/SrFeO_{3- δ} is likely limited by surface reactions of Ag-O species, with little spatial variation observed within the sample during *in-situ* reduction, suggesting fast ionic transport in SrFeO_{3- δ}. The Ag-O species on Ag/SrFeO_{3- δ} also accelerate the rate of SrFeO_{3- δ} regeneration.

References

[1] A. R. P. Harrison et al., Energy & Fuels, 37, 13, (2023), 9487–9499,

[2] A. Nenning et al., J. Phys. Chem. C, 120, 3, (2016), 1461–1471,

Keywords

Chemical looping; perovskites; in-situ TEM; NAP-XPS