Improving selectivity in ethylene oxide production by nano-structuring catalysts in chemical looping epoxidation

<u>Alexander Harrison^{1*}</u>, Joseph Gebers¹, Ewa Marek^{1*}

1 Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr. CB3 0AS, Cambridge, United Kingdom

*Corresponding authors: arph2@cam.ac.uk, ejm94@cam.ac.uk

Highlights

- Strontium ferrite modified with Ag and Na₂CO₃ provides oxygen for chemical looping epoxidation.
- A shell of Na₂CO₃ located between Ag particles and SrFeO₃ improves selectivity towards ethylene oxide.
- Covering Ag particles with Na2CO3 results in negligible conversion of C₂H₄.

1. Introduction

Chemical looping selective oxidation offers a promising alternative to conventional oxidation catalysis. In a chemical looping reaction, a hydrocarbon stream is fed over a reactive metal oxide (termed an oxygen carrier, OC), which donates lattice oxygen, driving the synthesis of oxygenated gaseous products. The feed is then switched to air to regenerate the OC and close the chemical loop, giving the safety advantage of inherent separation between the hydrocarbon and $O_{2(g)}$.Production of ethylene oxide (EO) in a chemical looping mode offers comparable performance to incumbent industrial processes, using an Ag catalyst on a SrFeO₃ perovskite OC [1].

Recently, a strontium ferrite-based oxygen carrier modified with an external shell of Na_2CO_3 was shown to improve selectivity in oxidative dehydrogenation of ethane [2]. The carbonate shell prevented nonselective oxidation to CO_2 , while allowing oxygen to be released to react selectively over a MoVTeNbO_x catalyst to form C_2H_4 . Here, we apply the principle of preventing non-selective oxidation at the surface of the OC to chemical looping epoxidation, modifying SrFeO₃ with both Ag and Na₂CO₃, allowing for improved selectivity towards EO.

2. Methods

Strontium ferrite (SrFeO_{3-δ}) was produced by solid state synthesis from stoichiometric amounts of SrCO₃ (Sigma Aldrich, >98%) and Fe₂O₃ (Honeywell Fluka, >99%), followed by calcination at 1000°C in 4 steps of 3 h, then sieved to 45-180 µm. To produce sodium carbonate shells around the particles of SrFeO₃, sodium nitrate solution (Aldrich, >99%) was added dropwise to SrFeO_{3-δ}, then dried for 12 h at 130 C, and calcined at 700°C in air for 5 h. Since NaNO₃ melts at 308°C and decomposes at >500°C, the calcination resulted in NaNO₃ first wetting the surface of SrFeO_{3-δ} particles; then decomposing and reacting with atmospheric CO₂ to form a ~50 nm shell of Na₂CO₃ [2]. Samples with target loading of 10wt% Na₂CO₃ were designated Na₂CO₃/SrFeO_{3-δ}. Another set of samples of SrFeO₃ were first impregnated with AgNO₃ solution, followed by drying and calcination for 5 h at 650°C, for target loading 10wt% Ag (designated Ag/SrFeO_{3-δ}). Samples of Ag/SrFeO_{3-δ} and Na₂CO₃(Ag/SrFeO_{3-δ}) and Ag(Na₂CO₃/SrFeO_{3-δ}); all prepared materials are summarised in Fig. 1. The presence of Na₂CO₃ was confirmed by Raman spectroscopy, and samples were additionally characterised by powder X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy.

Chemical looping epoxidation was performed in a stainless-steel tubular reactor heated to 270°C, with 1.8 g of active material placed below an inert layer of 4.0 g SiC (Alfa Aesar, 46 grit) and secured with quartz wool. Gas was fed from the top of the reactor at 180 mL min⁻¹ for a global hourly space velocity of 9600 h⁻¹. One chemical looping cycle comprised 1.5 min reduction in C₂H₄ (5.0vol%, balance N₂), 2 min purge in N₂, 15 min re-oxidation in air (all gases BOC), and the final 2 min purge with N₂.

Figure 1. Schematic showing summary of samples prepared by sequential impregnation with Ag and Na₂CO₃

Catalytic performance was determined by assessing the mean conversion of C_2H_4 , \overline{X} , mean selectivity towards EO, \overline{S} , and mean yield of EO, \overline{Y} , defined in Eq. 1.

$$\bar{X} = \frac{\int_{t_{start}}^{t_{end}} (y_{E0} + 0.5 \, y_{CO_2} + 0.5 \, y_{CO}) dt}{\int_{t_{start}}^{t_{end}} (y_{C_2H_4} + y_{E0} + 0.5 \, y_{CO_2} + 0.5 \, y_{CO}) dt}; \ \bar{S} = \frac{\int_{t_{start}}^{t_{end}} (y_{E0}) dt}{\int_{t_{start}}^{t_{end}} (y_{E0} + 0.5 \, y_{CO_2} +$$

where y_i is the mole fraction of component *i*, t_{start} is the first time in each cycle at which y_{EO} exceeded 50 ppm, and t_{end} is the time in each cycle corresponding to the maximum in y_{EO} .

3. Results and discussion

From experiments in the packed bed, shown in Fig. 2, Ag/SrFeO_{3-δ} shows stable selectivity towards EO of 23% with 19% conversion of C₂H₄, whereas for Ag(Na₂CO₃/SrFeO_{3-δ}) with an internal carbonate shell, selectivity of 35.3% at 11.3% conversion were achieved after 5 cycles. In the absence of the Ag catalyst, Na₂CO₃/SrFeO_{3-δ} was practically unreactive. Similarly, Na₂CO₃(Ag/SrFeO_{3-δ}), with an external carbonate shell covering the particles of Ag, showed virtually no formation of EO or CO₂. Contrastingly, the minimal conversion over Na₂CO₃/(Ag/SrFeO_{3-δ}) suggests that contact between Ag and the gas phase is needed to produce oxygenated products (EO and CO₂) [3], or, that C₂H₄ does not adsorb onto Na₂CO₃.

Figure 2. Comparison of conversion, selectivity, and yield of EO during chemical looping epoxidation over 5 cycles.

4. Conclusions

Modification of Ag/SrFeO₃ for chemical looping epoxidation by adding an internal Na₂CO₃ shell is an effective strategy for improving selectivity towards EO, while preventing non-selective reactions. Thus, nano-structured materials can help improve the competitiveness of chemical looping methods.

References

- [1] E. J. Marek, S. Gabra, J. S. Dennis, and S. A. Scott, Appl. Catal. B Environ., 262, (2020), 118216,
- [2] G. Luongo, F. Donat, A. H. Bork, E. Willinger, A. Landuyt, and C. R. Müller, *Adv. Energy Mater.*, 12, 23, (2022), 2200405,
- [3] A. R. P. Harrison, K. Y. Kwong, Y. Zheng, A. Balkrishna, A. Dyson, and E. J. Marek, *Energy & Fuels*, 37, 13, (2023), 9487–9499,

Keywords

Chemical looping; catalysis; epoxidation; molten salts